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REVIEW

Using haptic stimulation to enhance auditory perception in hearing-impaired 
listeners
Mark D. Fletchera,b

aUniversity of Southampton Auditory Implant Service, Southampton, UK; bInstitute of Sound and Vibration Research, University of Southampton, 
Southampton, UK

ABSTRACT
Introduction: Hearing-assistive devices, such as hearing aids and cochlear implants, transform the lives 
of hearing-impaired people. However, users often struggle to locate and segregate sounds. This leads to 
impaired threat detection and an inability to understand speech in noisy environments. Recent 
evidence suggests that segregation and localization can be improved by providing missing sound- 
information through haptic stimulation.
Areas covered: This article reviews the evidence that haptic stimulation can effectively provide sound 
information. It then discusses the research and development required for this approach to be imple
mented in a clinically viable device. This includes discussion of what sound information should be 
provided and how that information can be extracted and delivered.
Expert opinion: Although this research area has only recently emerged, it builds on a significant body 
of work showing that sound information can be effectively transferred through haptic stimulation. 
Current evidence suggests that haptic stimulation is highly effective at providing missing sound- 
information to cochlear implant users. However, a great deal of work remains to implement this 
approach in an effective wearable device. If successful, such a device could offer an inexpensive, 
noninvasive means of improving educational, work, and social experiences for hearing-impaired indi
viduals, including those without access to hearing-assistive devices.
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1. Introduction

Over the past half a century, dramatic advances in hearing- 
assistive device technology have enabled it to transform the 
lives of people with hearing impairment. One prominent 
example is the cochlear implant (CI), which enables severely- 
to-profoundly hearing-impaired individuals to perceive sounds 
through electrical stimulation of the auditory nerve. The CI 
stands as one of modern medicine’s greatest achievements, 
allowing users to follow a conversation in a quiet environment 
with a similar accuracy to normal-hearing listeners [e.g. 1]. 
However, significant limitations to CIs remain, with users 
often having considerable difficulties locating and segregating 
sounds [2,3]. Similar issues are experienced by hearing aid 
users, though to a lesser extent [3,4]. These limitations lead 
to impaired threat detection and an inability to understand 
speech in noisy environments, such as schools, restaurants, 
and busy workplaces.

Recently, a new approach has been proposed that uses 
‘electro-haptic stimulation’1 [5], whereby sound information 
that is poorly transferred by the electrical CI signal is provided 
through haptic stimulation. Exciting new evidence indicates 
that electro-haptic stimulation (EHS) can substantially improve 
speech-in-noise performance [5–8] and sound localization 
[9,10], as well as increasing sensitivity to more basic sound 
properties, such as pitch [11]. If effective, this approach could 

be delivered noninvasively and inexpensively in a compact 
wrist-worn device.

In addition to improving performance for hearing-assistive 
device users, haptic devices might be used to aid those cur
rently unable to access hearing-assistive technology. It is esti
mated that around 99% of potential CI candidates worldwide 
cannot access a CI [12]. Furthermore, for those in low-to- 
middle income countries that can access a CI, surgical compli
cation rates are around double that in high-income countries 
[13–16]. However, the main prohibitive factor is cost. In India, 
for example, the personal average annual income is less than 
2,000 USD, whereas the cost of a CI (not including hospital 
fees) is between 12,000 and 25,000 USD [17]. The conse
quences of this untreated hearing loss are substantial. Young 
children with unmanaged hearing loss typically have large 
deficits in language and cognitive development and low edu
cational attainment [18–22]. Children that have a disabling 
hearing loss in low-to-middle income countries are also unli
kely to complete primary education [23]; strikingly, in India, 
less than a third of hearing-impaired children are enrolled in 
school at any level and less than 2% receive higher secondary 
education or above [17]. Hearing-impaired adults in low-to- 
middle income countries have a much lower employment 
rate, and those that are employed tend to be in lower-grade 
occupations [20,24]. This means that, while hearing loss is 
often a result of poverty, it is also often a cause of poverty 
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[15,20,25]. The development of low-cost haptic devices to aid 
those with hearing impairments who are unable to access 
hearing-assistive devices could therefore have a substantial 
positive impact on quality of life, particularly in low-to- 
middle income countries.

This review is divided into two parts. The first examines 
existing work on the use of haptic stimulation to aid hearing- 
impaired listeners, whilst the second discusses how the pro
mising work already undertaken could be translated into 
a clinically viable haptic device. It considers what sound infor
mation is most beneficial to hearing-impaired listeners, how to 
provide that information, and what the necessary require
ments are for a successful haptic device.

2. Background

2.1. Enhancement of speech-in-noise performance

Work using haptic stimulation to aid those with hearing 
impairment dates back to at least the 1920s, when 
a desktop haptic device that stimulated the fingers was 
trialed to support deaf children in the classroom [26–29]. 
For deaf individuals who were simultaneously lip reading, 
this device was reported to increase the number of words 
recognized by around 20% when there was no background 
noise. Later, beginning in the late 1960s, researchers in the 
visual sciences used a similar approach for blind individuals, 
delivering visual information through haptic stimulation on 
the fingers or back [30–33]. Using this approach, participants 
were able to perceive depth and perspective, judge the 
speed and direction of a rolling ball, recognize faces and 
common objects, and complete complex inspection- 
assembly tasks. Interestingly, after training, participants 
reported that they experienced these ‘images’ as being exter
nalized in front of them, rather than being located at the 
haptic stimulation site. These influential studies from both 
the auditory and visual sciences helped trigger an expansion 
of research into the use of haptic stimulation to aid deaf 
individuals, which peaked in the 1980s and 1990s [34,35]. 

The ‘tactile aids’ that were developed showed significant 
promise. One study, for example, showed that after extensive 
training with the Queen’s Tactile Vocoder device, it was 
possible to learn a vocabulary of 250 words [36,37]. 
However, in parallel to the development of tactile aids, CI 
technology underwent a revolution [1]. By the mid-1990s, 
outcomes for CI users had substantially outstripped those 
achieved by tactile aids [1,34]; by the early 2000s, the success 
of the CI had caused the development and use of tactile aids 
to all but cease.

EHS uses haptic stimulation to augment CI listening, 
rather than as an alternative to the CI. To assess the poten
tial for a new generation of haptic devices to aid hearing- 
impaired individuals, it is important to consider the limita
tions that prevented the widespread use of tactile aids in 
the 1980s and 1990s. One limitation was that these devices 
were not compact or discreet, and required a large battery 
pack that frequently needed to be recharged. For example, 
the body-worn processor unit alone for the Siemens 
Minifonator measured 84 × 82 x 30 mm and for the 
Tactaid II measured 93 × 57 x 23 mm [38]. Another issue 
was that the electronics, microphones, and haptic stimula
tors were all connected by wires. This made many tactile 
aids difficult to self-fit, uncomfortable to wear, and raised 
safety concerns (for example, that wires might get caught 
on objects such as cups and saucepans). A further important 
limitation was the impossibility of performing advanced 
signal-processing. Many of these limitations are now con
siderably reduced due to the substantial developments in 
motor, battery, microprocessor, and wireless-communication 
technology. The time therefore seems right for a new gen
eration of compact, discreet haptic devices to support the 
hearing impaired.

While tactile aids of the 1980s and 1990s were ineffective in 
noisy environments, two recent studies have shown that hap
tic stimulation can be used to improve speech-in-noise per
formance in CI users [7] and normal-hearing listeners [39]. 
However, there are two significant limitations to these studies. 
Firstly, haptic stimulation was delivered to the fingertip, which 
would disrupt many everyday activities if deployed in a clinical 
device; secondly, the haptic signal was extracted from the 
clean speech signal (without background noise), which is not 
available in the real world. If the clean speech signal was 
available, then this signal would simply be presented to the 
listener through the hearing aid or CI.

More recently, it has been shown that haptic signals 
extracted from speech in noise and delivered to the wrists 
can improve speech-in-noise performance for CI users [5,6,8]. 
These studies showed benefits across participants who used 
a range of CI devices (from MED-EL, Advanced Bionics, and 
Cochlear Ltd). In one study, where speech and noise were 
both presented from directly in front of the listener, CI users 
recognized 8% more words in noise with EHS, with some 
participants recognizing over 20% more words [5]. Another 
study explored whether EHS improved speech recognition 
when speech and noise were spatially separated. This study 
focused on the 95% of CI users that are only implanted in one 
ear [40]. The speech was presented from directly in front of 
the listener and the noise was presented either to the 

Article highlights

● Recent studies have shown compelling evidence that haptic stimula
tion can be used to enhance spatial hearing and speech-in-noise 
performance for cochlear implant users. Haptic stimulation might also 
have utility for hearing aid users, particularly for improving spatial 
hearing, as well as for those without access to hearing-assistive 
devices.

● Laboratory studies are required to establish the limits of this 
approach, such as how much delay there can be between the 
audio and haptic signal before the benefits of haptic stimulation 
decrease. These studies will be critical for informing haptic device 
design.

● Significant questions remain regarding how best to acquire the audio 
signal that is converted to haptic stimulation, how best to process 
and deliver the haptic signal, and the precise specification for 
a successful device.

● The technology required to develop a device that meets the antici
pated requirements already exists.

● Experiments have so far been confined to the laboratory and field 
trials are required to fully establish the efficacy of the approach.
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implanted side or to the non-implanted side. For both noise 
positions, CI users’ speech-reception thresholds in noise were 
improved by around 3 dB when EHS was provided [8]. In these 
studies of EHS enhancement, the signal processing was com
putationally lightweight so that it could be applied in real- 
time on a compact device. This demonstration of an effective 
and clinically viable approach marks an exciting advance in 
the translation of EHS from a research finding to an effective 
clinical tool.

The speech-in-noise performance benefit measured for 
EHS with spatially separated sounds is comparable to the 
improvement observed when patients use two implants 
rather one [see 8 for discussion,41,42]. However, implanta
tion of a second device is expensive, risks loss of residual 
hearing and vestibular dysfunction, and limits access to 
future technologies and therapies. A noninvasive, inexpen
sive haptic device may therefore be an attractive alternative 
to a second implant.

For the many that have not received a second implant, 
another approach used to improve speech-in-noise perfor
mance is the mounting of an additional microphone behind 
the non-implanted ear. The audio from this microphone is 
transmitted to the implant so that the signals from the 
implanted and non-implanted sides can be combined. This 
contralateral routing of signal (CROS) approach aims to 
reduce the negative effects of the acoustic head-shadow 
when a sound of interest is on the non-implanted side. 
One study established whether CROS microphones benefit 
speech-in-noise performance when speech is presented in 
front of the listener and noise is presented either to the 
side with the implant or to the opposite side [43]. 
Unexpectedly, no benefit of the CROS microphone was 
found when the noise was on the implanted side and the 
CROS microphone was found to impair performance when 
the noise was on the non-implanted side. Another study 
found that CROS microphones did not affect speech-in- 
noise performance when the speech and noise were both 
in front of the listener, and reduced performance when the 
speech was in front and the noise was on the implanted or 
non-implanted side [44]. EHS, on the other hand, has been 
shown to produce clear benefits in each of these three 
speech and noise configurations. Other studies have found 
considerable benefits of CROS microphones under different 
conditions, such as when speech is located on the non- 
implanted side and noise comes from loudspeakers all 
around the listener [45,46]. To date, no studies have 
assessed EHS benefits under comparable conditions.

2.2. Enhancement of sound localization

In addition to studies showing that tactile aids can be used to 
provide speech information, a small number of studies 
showed that haptic stimulation on the fingertips could be 
used to locate sounds [47–51]. However, despite this early 
promise, haptic sound-localization remains little studied. 
Building from this work, it was recently shown that EHS can 
be used to dramatically improve sound localization in CI users 
[9]. In this study, the haptic signal was derived from the audio 

received by behind-the-ear hearing-assistive devices and 
delivered to each wrist. This allowed participants to access 
intensity differences between the ears [52], which are key 
cues for sound localization. In CI users who were implanted 
in one ear (unilateral CI users), even without training, EHS was 
found to reduce RMS error in sound localization from 47° to 
29°, making their performance similar to CI users implanted in 
both ears [bilateral CI users; 3,53]. After a small amount of 
training with EHS (lasting around 15 minutes), performance 
improved substantially, becoming similar to that of bilateral 
hearing-aid users [3,54]. Another recent study, which used 
a similar approach but with a more sophisticated signal- 
processing strategy, found still greater haptic sound- 
localization accuracy [10]. Researchers have explored whether 
CROS microphones improve sound localization for unilateral CI 
users, but found no clear benefit [55].

The same EHS approach used for haptic sound-localisation 
has been shown to enhance speech-in-noise performance for 
spatially separated sounds [8]. The signal-processing approach 
is also similar to EHS approaches that have been shown to 
enhance speech-in-noise performance for co-located sounds 
[5,6]. Future work should aim to unify these promising signal- 
processing strategies.

2.3. Enhancement of music perception

CI users frequently suffer from an inability to appreciate and 
enjoy music [56]. This is primarily due to the implant’s inability 
to provide frequency information, which conveys critical mel
ody, harmony, and tonality information, and is important for 
sound segregation [56–58]. Some studies have shown evi
dence that melody recognition can be improved using haptic 
stimulation at either the fingertip [59] or wrist [60]. Another 
study showed that a haptic device on the forearm could be 
used to substantially improve discrimination of changes in 
fundamental frequency (an acoustic correlate of pitch). 
Participants were able to discriminate fundamental-frequency 
shifts of just 1% [11], which is less than the smallest pitch 
change found in most western melodies and substantially 
better than typical CI users [61,62]. This performance was 
maintained even in the presence of high levels of inharmonic 
background noise (with signal-to-noise ratios as low as 
−7.5 dB). However, an important challenge for this and other 
approaches will be to extract sound information for a single 
harmonic sound against a background of other harmonic 
sounds, such as in a polyphonic musical piece. This may be 
aided by the recent emergence of object-based audio encod
ing for music, film, and gaming, which gives access to indivi
dual sounds within a musical piece or auditory scene [e.g. 
63,64].

For the promising findings discussed to be successfully 
translated into a clinically viable haptic device, there are 
several important questions that must be addressed: (1) 
how will the audio signal be acquired; (2) how will this 
audio signal be processed and converted to haptic stimula
tion; (3) how and where will haptic stimulation be delivered; 
and (4) what are the key specifications for a successful 
haptic device? These questions will be considered in the 
following section.

EXPERT REVIEW OF MEDICAL DEVICES 3



3. Priorities for haptic provision and device design

3.1. Audio signal acquisition

The first challenge for a haptic device will be how to capture 
the audio that is transformed to haptic stimulation. In one 
proposed approach, the audio signal is streamed from behind- 
the-ear CIs or hearing aids that are either already worn by the 
user or are fitted in addition to an existing device [5,6,8,9]. One 
advantage of this approach is that technology already 
deployed in hearing-assistive devices, such as beamforming 
[2,65], can be exploited. In beamforming, the difference in the 
arrival time at multiple microphones mounted within a single 
device is used to steer the maximum sensitivity toward the 
sound source of interest (typically in front of the listener) and 
reduce sensitivity to sources from other locations (typically to 
the back and sides). This approach has been shown to sub
stantially improve speech-in-noise performance [66]. Another 
highly effective approach used with hearing-assistive devices 
is remote microphones, which are placed close to the sound 
source of interest [66]. Remote microphones, such as the 
Roger Pen or Oticon ConnectClip, use Bluetooth or radio to 
stream audio directly to the hearing-assistive device. A haptic 
device that streamed audio from a hearing-assistive device 
could benefit from this existing technology.

Streaming audio from hearing-assistive devices has further 
advantages. Firstly, the haptic device could benefit from some 
of the signal processing already performed by the hearing- 
assistive device (such as pre-emphasis and microphone fre
quency-response correction filtering). Secondly, if audio is 
streamed from hearing-assistive devices behind each ear, hap
tic devices will have access to spatial-hearing cues (such as 
intensity differences between the ears), which has been 
exploited in previous work to improve sound localization 
[9,10,52]. Finally, streaming audio from the same source as 
the hearing-assistive device will maximize the correlation 
between audio and haptic signals, which is critical for effective 
multisensory integration [67–71].

For audio streaming from a hearing-assistive device to be 
viable for real-world use, low-power wireless streaming tech
nology is required. One new technology, which is available in 
many of the latest hearing-assistive devices, is Bluetooth Low 
Power (LE). Bluetooth LE has greatly reduced power consump
tion compared to classic Bluetooth, allows higher-quality 
audio streaming, and supports multiple simultaneous data 
streams. An alternative to Bluetooth LE, which is used by 
Advanced Bionics and Phonak for streaming between hearing- 
assistive devices, is low-frequency radio. Low-frequency radio 
allows extremely low-latency data transfer but has high power 
consumption. Further work is required to establish the most 
effective technology for streaming between hearing-assistive 
and haptic devices.

An alternative to streaming audio from behind-the-ear 
devices is to mount microphones either on the haptic device 
or on another part of the body. A microphone mounted on 
a wrist- or hand-worn device might allow the user to direct the 
microphone toward a talker or other sound source of interest. 
However, arm movements, such as when walking or gesticu
lating, may lead to unwanted distortion of the audio signal. 

A newly released wrist-worn haptic device, the ‘Buzz’ 
(Neosensory, San Francisco, USA), has microphones mounted 
on top of the device. In informal real-world trials by the author 
and colleagues, this device was found to be frequently trig
gered by clothing moving against the device and to be highly 
susceptible to wind noise. It was also found to be excessively 
triggered by impulsive sounds, particularly when the hands 
manipulated objects during activities such as typing or cook
ing. These issues would be reduced or avoided by streaming 
audio from behind-the-ear devices, which use advanced tech
niques to suppress wind noise and impulsive sounds [72]. 
A combination of microphones mounted on the device or 
body and on hearing-assistive devices might also be consid
ered, particularly as having access to audio from microphones 
at multiple sites might aid noise reduction [e.g. 73,74].

3.2. Signal processing

Once the audio has been received by the haptic device, the 
next consideration is how it should be processed. The first 
possible approach is not to process it at all, and to rely on the 
skin to extract the most important sound features 
[27,29,39,75]. One major limitation of this approach is that 
the skin is insensitive to vibration at frequencies higher than 
around 500 Hz [76], where a large amount of speech energy 
resides [77]. To overcome this issue, one tactile aid transposed 
sound at higher frequencies down to lower frequencies [78]. 
Nonetheless, using this approach, important stimulus features 
are likely to be masked or to be impossible for the tactile 
system to extract [79,80].

Another approach is to extract key sound features from the 
audio signal and map them to the haptic signal. It is likely to 
be important to provide sound features that give frequency 
information, such as the fundamental frequency of the sound 
of interest. Hearing impairment almost always leads to 
a reduced ability to discriminate sounds at different frequen
cies [81]. For CI users, frequency discrimination is typically 
particularly poor [82]. This can impair talker age, sex, and 
accent identification [83,84] as well as perception of speech 
prosody, which allows listeners to distinguish emotions (e.g. 
anger from sadness), intention (e.g. sarcastic from sincere), 
statements from questions, and nouns from verbs (e.g. ‘object’ 
from ‘object’) [85–88]. Frequency information is also critical to 
separating sounds that occur at the same time [58,89] and to 
music perception [56]. One priority for haptic devices should 
therefore be provision of frequency information.

Another important feature is how sound changes in ampli
tude over time (the amplitude envelope). Hearing impairment 
almost always leads to a reduction in the dynamic range 
available to the listener (the difference between detection 
threshold and uncomfortably intense stimulation). The 
dynamic-range available to hearing-impaired listeners is typi
cally around half that of normal-hearing listeners [90]. The 
dynamic-range available for electrical stimulation in CI users, 
however, is around just an eighth of that for normal-hearing 
listeners [91–93]. Ability to discriminate sounds at different 
intensities is also typically severely impaired in CI users [94]. 
Encouragingly, the dynamic range for vibro-tactile stimulation 
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is around four times the dynamic range available through 
electrical stimulation with a CI [52]. The tactile system also 
has excellent intensity discrimination, which is comparable to 
that of the healthy auditory system [52,95–99] and is highly 
sensitive to amplitude envelope modulations at the frequen
cies that are most important for speech recognition [100,101]. 
A second priority for a haptic device should therefore be 
provision of amplitude envelope information.

In line with these priorities, many tactile aids that aimed to 
enhance lip-reading in deaf individuals extracted frequency or 
amplitude information [36,102]. Previous studies have com
pared speech recognition when providing the fundamental 
frequency or amplitude envelope of the speech through 
audio, either in isolation [103] or in addition to CI-simulated 
audio [104,105]. Similar benefit to speech reception thresholds 
was found for each feature. However, the fundamental fre
quency provided more information about vowel duration and 
stress, whereas the amplitude envelope provided more infor
mation about consonant place, manner, and voicing [103]. 
This is consistent with the finding that, while each feature 
provides similar overall benefit to speech-in-noise perfor
mance, the provision of both features together provides 
most benefit [104].

Like tactile aids, recent studies showing benefit of EHS to 
speech-in-noise performance in CI users have also extracted 
frequency or amplitude information. Huang, Sheffield [7] 
showed benefit to speech-in-noise performance in CI users 
by presenting the fundamental frequency through haptic sti
mulation. Changes in fundamental frequency were delivered 
through changes in the frequency of haptic stimulation on the 
fingertips. Besides the issues already discussed, regarding the 
stimulation site and the deriving of the haptic signal from 
clean speech, delivering information through changes in hap
tic stimulation frequency is likely to lead to information being 
lost due to the skin’s poor frequency resolution [79]. One way 
that some devices have overcome this issue is by mapping 
frequency to location on the skin. A recent study used the 
newly developed mosaicOne_B device, which has an array of 
haptic stimulators on the forearm and uses a novel approach 
for mapping fundamental frequency to stimulation location 
[11]. This device was shown to be highly effective at delivering 
fundamental-frequency information, and was robust to back
ground noise. Future work should evaluate whether the 
mosaicOne_B can be used to enhance speech-in-noise 
performance.

Other researchers that have shown EHS can enhance 
speech-in-noise performance for CI users have primarily 
focused on providing speech amplitude-envelope information 
[5,6,8]. In these studies, information was also provided about 
the relative sound energy across either four [5,8] or seven [6] 
frequency bands, which were selected to contain substantial 
speech energy. Frequency and amplitude information were 
delivered through changes in the haptic stimulation intensity 
of tones focused within the frequency range where sensitivity 
is high. The frequency separation between these tones meant 
that they were expected to be individually discriminable. 
However, as argued above, it may have been possible to 
transfer more frequency information through a spatial, rather 
than frequency, mapping [11]. The three studies that have 

shown improved speech-in-noise performance by providing 
amplitude envelope information through haptic stimulation 
have derived their haptic signal from speech in noise, rather 
than from clean speech [5,6,8]. To do this, two of these studies 
[5,6] used a simple noise-reduction approach that relied on 
the speech signal being more intense than the background 
noise. This is adequate for enhancing speech-in-noise perfor
mance for CI users, who typically struggle even when speech 
is substantially louder than the background noise [5,8]. 
However, it may not be suitable for hearing aid users, who 
are typically able to follow speech in situations where the 
noise is louder than the speech [4]. Future work should assess 
the effectiveness of more sophisticated methods for extracting 
signals in noise to widen the applicability of this approach 
[106,107].

Another important feature is sound location. In normal- 
hearing listeners, the origin of a sound is determined primarily 
by assessing differences in the intensity and arrival time 
between the ears. As previously discussed, highly accurate 
sound localization has been shown using haptic stimulation 
derived from audio received by behind-the-ear devices [9,10]. 
In this work, sounds were located using intensity differences 
across the wrists [52], which matched the sound intensity 
differences across the ears. The differences in arrival time 
between the ears were also provided through haptic stimula
tion, but these differences were much smaller than can likely 
be discriminated by the tactile system [108,109]. Future work 
could explore methods for enhancing spatial-hearing cues to 
further improve haptic sound-localization [110–112]. One 
approach that might be explored is to remap time difference 
cues to intensity differences so that they can be effectively 
extracted by the tactile system.

Any haptic signal-processing that is deployed must be 
computationally lightweight. This is to avoid incurring 
a delay in the arrival of the haptic signal that could disrupt 
binding of auditory, visual (e.g. lip reading), and haptic infor
mation. It will also be important for allowing the signal- 
processing unit to be compact and power efficient. There is 
encouraging evidence that a processing delay of tens of milli
seconds may be acceptable, although there is insufficient 
evidence currently to establish this with confidence. One line 
of evidence comes from research studying the influence of 
haptic stimulation (air puffs) on the perception of aspirated 
and unaspirated syllables [113]. In this work, it was found that 
the influence of haptic stimulation was not significantly 
reduced when haptic stimulation was delayed by up to 
100 ms. Other work has shown evidence of ‘temporal recali
bration’, where consistent delays of several tens of millise
conds between correlated sensory inputs are rapidly 
corrected for in the brain so that perceptual synchrony is 
retained [114–117]. If haptic stimulation can be delayed from 
the audio and visual signal by tens of milliseconds, then this 
could allow for sophisticated signal-processing strategies to 
be implemented in haptic devices.

Another technology that might maximize the effectiveness 
of signal-processing regimes is low-latency data streaming 
between haptic devices. This could be achieved using radio 
or Bluetooth LE technology, which is discussed in the Audio 
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signal acquisition section. One way in which streaming 
between devices may be important is for linking signal- 
processing that adjusts the signal intensity or delay, such as 
compressors, to avoid distortion of spatial hearing cues [118].

3.3. Signal delivery

3.3.1. Stimulation method
Once the signal has been processed, the next consideration is 
how it should be delivered. Haptic stimulation has traditionally 
been delivered either through electro-tactile stimulation, 
whereby a current is passed through the skin, or vibro-tactile 
stimulation, whereby the skin is mechanically indented. The 
usable frequency and amplitude ranges for electro-tactile sti
mulation are substantially smaller than for vibro-tactile stimu
lation [119–122]. Furthermore, because electro-tactile 
stimulation depends on the electrical resistance of the skin, 
it is strongly affected by its moisture content and by small 
changes in the stimulation location [119,120,123]. Because of 
the limited frequency and amplitude range for electro-tactile 
stimulation, sound information has typically been delivered 
using arrays of electrical stimulators, with sound features 
mapped to changes in stimulation location and pulse rate 
[124,125]. Besides these limitations, there are also safety con
cerns with electrical stimulation that do not apply to vibro- 
tactile stimulation. Firstly, because the fingers have a lower 
electrical resistance than most other body parts, devices 
designed for other body parts must ensure that the electrical 
contacts cannot be touched by the user’s finger [126]. 
Secondly, if mounted on the chest, electro-tactile devices 
may not be suitable for those with pacemakers. One advan
tage of using electrical stimulation is that it may require less 
power, and therefore allow a longer battery life for the device 
[126]. However, given the limitations and additional safety 
considerations, vibro-tactile stimulation appears to be a more 
suitable stimulation method.

Recent developments in haptic motor and driver technol
ogy have made it possible for precisely controlled vibro- 
tactile stimulation to be delivered in compact devices at 
a low cost. Because of their higher power-efficiency, linear 
resonant actuators (which generate vibration through 
a voice coil moving a mass) may be preferred to eccentric 
rotating mass motors (which generate vibration through 
rotation of an unbalanced load). Piezoelectric motors also 
have high power-efficiency but are often expensive. The 
response latency and precision of waveform tracking for 
linear resonant actuators and eccentric rotating mass motors 
can be improved using overdrive and active-breaking tech
niques. Overdrive involves temporarily driving the motor 
above its rated voltage to reduce the time it takes to rise 
to its target intensity. Active breaking involves applying 
a reverse voltage to reduce the time the motor takes to 
fall to its target intensity. Application of these techniques 
using the latest haptic-driver technology may be important 
for achieving sufficiently precise speech amplitude-envelope 
tracking.

In addition to providing vibro-tactile stimulation, the 
Tactile and Squeeze Bracelet Interface (Tasbi), which was 

recently developed by Facebook Reality Labs, modulates 
the amount of pressure applied [127]. This prototype device, 
which was developed to enhance interactions in virtual 
environments, has a tensioning mechanism that adjusts 
the amount of ‘squeeze’ as well as six linear resonant 
actuators spaced around the wrist. One way in which 
squeeze intensity could be used in a haptic device for the 
hearing impaired is to provide information about absolute 
sound intensity. This would allow vibro-tactile stimulation to 
be focused on providing detailed information about more 
subtle local amplitude changes. Squeeze feedback could 
also be effective for supporting music, film, and video 
games as it has been argued that it elicits emotional 
responses and is less attention demanding than vibro- 
tactile stimulation [127–129].

3.3.2. Stimulation site
After establishing the most appropriate stimulation method, 
the stimulation site must then be considered. A suitable site 
will be sufficiently sensitive to allow sound information to be 
effectively transferred, whilst allowing easy device self-fitting, 
high comfort, and minimal disruption to common activities. 
Some recent studies have provided haptic stimulation to the 
fingertip [6,7,130], because it is highly sensitive and contains 
a high density of tactile receptors [131]. However, the fingertip 
does not seem an optimal site for real-world use as it is 
frequently involved in everyday tasks. An alternative site, 
also used in recent studies, is the wrist [5,8–10]. Although 
the wrist has higher vibro-tactile detection thresholds than 
the fingertip [132] and a lower density of tactile receptors 
[131], there is evidence that intensity discrimination is 
enhanced at the wrist compared to the fingertip, and that 
frequency discrimination and temporal-gap detection are simi
lar [132]. Moreover, the wrist would seem a practical site for 
a real-world application. Wrist-worn devices are familiar, esthe
tically unobtrusive, do not impede everyday tasks, and are 
easy to self-fit.

Figure 1 shows the mosaicOne_C, a wrist-worn haptic 
device for augmenting CI listening that is currently under 
development. Building on the approach used in the 
mosaicOne_B device [11], which is worn on the forearm, fun
damental frequency can be mapped to stimulation location 
around the wrist using four vibro-tactile motors. The percep
tion of haptic stimulation can be created at a continuum of 
positions around the wrist by panning between the motors, 
which maximizes the resolution of the device. The Buzz, 
another wrist-worn haptic device for enhancing auditory per
ception, also has multiple motors arranged around the wrist. 
The precise signal-processing strategy used to convert audio 
to haptic stimulation is not in the public domain, but the Buzz 
does not map the fundamental frequency of a sound to 
a position on the wrist. Other multi-motor prototype wrist- 
worn devices have been developed for other applications, 
such as enhancing virtual and augmented reality (e.g. the 
Tasbi, discussed above), delivering more detailed notifications 
and alerts [133], or improving color discrimination in color- 
blind people [134].
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One potential limitation of providing haptic stimulation at 
the wrist or finger is the frequent movements and changes in 
relative position during many activities. This could distort 
sound information, particularly if transmitted through differ
ences in stimulation across the hands or wrists. This idea is 
supported by work showing that crossing the arms impairs 
temporal-order judgments for haptic stimulation across the 
hands [135,136], although it is not clear whether this can be 
overcome with training. Other evidence suggests that changes 
in relative arm position do not impair the perception of inten
sity difference cues, which are used for haptic sound- 
localization [9,10]. For example, one study found that haptic 
intensity perception on one hand was modulated by haptic 
stimulation on the other hand, but that this modulation did 
not depend on the relative positions of the hands [137]. 
However, further work is required to properly assess the 
impact of body motion on the transfer of sound features 
through haptic stimulation.

Given the possibility that changes in the relative position 
of haptic devices might impair information transfer, sites 
whose relative positions are more fixed should be consid
ered. Previously, tactile aids have been developed that pro
vide stimulation on the sternum [138], abdomen [139], or 
back [140]. Wilska [141] compared the sensitivity of different 
sites. He found the sensitivity of the sternum to be quite 
similar to the wrist, the abdomen to have much lower 
sensitivity, and some areas of the back to be less sensitive 
than the wrist or sternum but substantially more sensitive 
than the abdomen. Other potential sites for haptic stimula
tion might be the biceps or feet. Like the back, these sites 

are less sensitive than the wrist or sternum but are more 
sensitive than the abdomen. While many of these candidate 
sites benefit from allowing devices to be discreet, some may 
raise difficulties for self-fitting or lead to uncomfortable 
feelings of restrictedness that were reported by some 
users of body-worn tactile aids.

For devices that map changes in stimulus features to 
changes in location of stimulation, it is also important to 
consider the spatial acuity of the tactile system at different 
sites. The ability to discriminate two spatially separate stimuli 
varies substantially across different parts of the body. For 
example, spatial acuity is high at the fingertip, is reduced on 
the forearm, and is reduced further still on the shoulders [142]. 
It should be noted however, that there is more space available 
for across-site stimulation on the forearm and shoulder than 
on the fingertip. As well as careful selection of stimulation site, 
devices using spatial mapping of stimulus features should 
consider the decline in spatial acuity with age [143], ensuring 
that motors are sufficiently spaced to retain performance in 
older populations.

3.4. Device specifications

Several additional specifications must be met if a haptic device 
is to be clinically successful. One important issue is power 
management. Hearing-assistive devices target a minimum bat
tery life of 14 hours, so that a typical user (who sleeps for 
8 hours each day) needs only to charge their device overnight. 
However, modern devices using lithium-ion batteries often 
last several days on a single charge. With careful power 

Figure 1. Image of the mosaicOne_C wrist-worn haptic device currently under development as part of the Electro-Haptics Research Project (www.electrohaptics.co. 
uk) at the University of Southampton (UK). Four haptic motors are housed around a rubber wrist-strap. Image reproduced with permission of Samuel Perry and Mark 
Fletcher.
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management and use of low-power motor (e.g. linear reso
nant actuators) and wireless (e.g. Bluetooth LE) technology, as 
well as computationally lightweight signal processing, a haptic 
device that meets the required battery-life is readily achiev
able. The Buzz wrist-worn haptic device, for example, can be 
continuously used for more than 24 hours with a single 
charge.

Other important considerations for haptic-device design 
are esthetic attractiveness, compactness, discreetness, and 
comfort. It will be important for any haptic device to be 
lightweight and have a small footprint, although the precise 
acceptable form-factor will no doubt be influenced by the 
amount of benefit the device gives. A compact and light
weight device can readily be produced using recently devel
oped low-cost, compact motor and haptic-driver technology 
in combination with the battery, wireless, and signal- 
processing technology already implemented in hearing- 
assistive devices. A common complaint about tactile aids 
was that they highlighted that the user had a hearing 
impairment. This could be an issue for devices fitted at 
sites where they are likely to be visible, such as the wrist. 
However, given the current prevalence of smartwatches, 
a wrist-worn device with a sufficiently modern design (like 
that shown in Figure 1) may be acceptable.

Another important feature of any device will be ease of use 
for the patient and clinician. This will include already men
tioned considerations, such as ease of self-fitting, but may also 
mean the inclusion of adjustable device settings through easy 
to use and understand buttons on the device or a linked 
smartphone app. It is also possible that device tuning, based 
on the user’s vibro-tactile detection and discomfort thresh
olds, will be required to maximize comfort and the dynamic 
range available to the device. To facilitate uptake, tuning 
routines for clinicians or users must be fast and intuitive. It is 
also possible that the optimal haptic signal-processing strat
egy will depend on the user’s hearing-assistive device type 
and programming. In this case, firmware updates that adjust 
the haptic signal-processing strategy could be sent from the 
hearing-assistive device when a new haptic device is paired 
with it. This would require either close collaboration between 
hearing-assistive and haptic device manufacturers, or for hear
ing-assistive device manufacturers to develop their own haptic 
devices. However, it is important to note that across a number 
of studies that have shown clear benefits of EHS for a range of 
CI devices, there was no individual tuning of haptic stimula
tion [5,7–9]. Furthermore, despite substantial variation in 
vibro-tactile detection thresholds, no correlation between the 
size of the benefit of EHS and detection threshold has been 
found [5,6,8–10]. It is therefore possible that effective haptic 
devices might be developed that required little or no indivi
dual tuning.

Finally, additional features might be added to haptic 
devices to assist in daily life. For example, the device 
might connect to a range of smart devices within the 
Internet of Things to improve awareness and safety. 
These might include doorbells, telephones, baby moni
tors, ovens, and wake-up, intruder, fire, or carbon mon
oxide alarms. The effectiveness of some of these 
additional features will partially depend on the haptic 

device having a long battery-life or allowing easy switch
ing of battery units.

4. Conclusion

Exciting new evidence has recently emerged showing that 
providing missing sound-information through haptic stimula
tion could be highly effective in augmenting hearing-assistive 
devices. This approach could also be used to aid the many 
millions of hearing-impaired people worldwide who cannot 
access hearing-assistive technology. So far, the approach has 
shown particular promise for CI users, for whom impressive 
improvements to speech-in-noise performance and spatial 
hearing have been demonstrated. These laboratory findings 
must now be reproduced in the real-world with a device that 
is appropriate for clinical use. The technology required to 
develop such a device is already available. However, a large 
amount of work remains to establish the best way to effec
tively acquire and process the audio signal, the optimal device 
configuration, and the most suitable stimulation site. 
Furthermore, an effective device will likely require the combin
ing of cutting-edge motor, battery, microprocessor, and wire
less communication technology. If this can be achieved, then 
such a device could provide a noninvasive, low-cost means of 
substantially improving outcomes for hearing-impaired 
listeners.

5. Expert opinion

It is predicted that the number of people with a disabling 
hearing loss will nearly double in the next 30 years [20]. There 
is therefore a rapidly growing population that could poten
tially benefit from the use of haptic stimulation to provide 
auditory information. It seems likely that haptics can provide 
most benefit to those with severe-to-profound hearing impair
ments, who either have CIs or would be CI candidates. For 
those fortunate enough to have access to CIs, an effective 
haptic device could significantly increase spatial awareness 
and the ability to hear in noisy environments. It could also 
offer an inexpensive means to acquire the benefits of a second 
CI without the need for an expensive second surgery. This 
could substantially reduce costs for individuals and healthcare 
services. However, many people across the world cannot 
access facilities for implanting a CI or providing a hearing 
aid, with cost being a major prohibitive factor. In India, for 
example, the cost of getting a CI is several times the personal 
average income [17], making them unaffordable for the major
ity of candidates. For these people, an effective haptic device 
might offer an affordable means of recovering critical access 
to the auditory world. This could allow children and adults far 
greater access to education, work, and leisure and thereby 
substantially their improve quality of life.

Currently, the main barrier to uptake of this approach is the 
absence of an effective, clinically approved haptic device. If an 
effective device was available that was inexpensive, comforta
ble, discreet, easy for the user to self-fit, and easy for the 
clinician to tune to the individual, then it is difficult to see 
significant barriers to uptake. Substantial work remains, how
ever, to establish the optimal signal-processing strategy and 
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device configuration to maximize benefit for both hearing- 
assistive device users and those who cannot access hearing- 
assistive technology. There are also significant challenges 
ahead in designing and manufacturing a suitable haptic 
device, carrying out carefully controlled large-scale real-world 
trials, and obtaining clinical approval. All these challenges, 
however, can be met.

Within the next five years, a significant expansion in the 
number of researchers working in this area is anticipated. As 
the field grows, the range of outcome measures used to 
assess the benefits of haptic stimulation to hearing is also 
expected to increase. For example, it will likely soon be 
understood whether haptic stimulation can be used to 
reduce listening effort and improve access to speech pro
sody. Advanced neuroimaging methods, such as near- 
infrared spectroscopy and electroencephalography, will also 
likely be deployed so that the underlying mechanisms behind 
haptic enhancement of hearing can be understood. The big
gest development, however, is expected to be the produc
tion of an effective device and the translation from laboratory 
testing to real-world trials. To develop such a device will 
require the bringing together of several cutting-edge tech
nologies. This technology will likely include 3D-printing, com
pact power-cells, low-latency data streaming, 
microprocessors, haptic drivers, and micro-motors. It will be 
critical for clinicians, engineers, researchers, and industry to 
work closely together. By doing this, it seems likely that, 
within the next five years, we will see a clinically approved 
haptic device to enhance auditory perception in hearing- 
impaired listeners.

Note

1. Other researchers have used the term ‘electro-tactile stimulation’. 
The term ‘electro-haptic stimulation’ is preferred as electro-tactile 
stimulation is commonly used to refer to electrical stimulation of 
the skin, rather than to using tactile stimulation to augment CI 
listening. 
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